If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2+6b=36
We move all terms to the left:
b^2+6b-(36)=0
a = 1; b = 6; c = -36;
Δ = b2-4ac
Δ = 62-4·1·(-36)
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{5}}{2*1}=\frac{-6-6\sqrt{5}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{5}}{2*1}=\frac{-6+6\sqrt{5}}{2} $
| 0.2+y=1 | | x/1-8=8 | | -3/5×4x-1=-17 | | x=0.3x+0.2 | | 1/4x+9=3/2 | | 5.9p=-70.8 | | 5y+7=2y+13 | | 2x/3=20•3 | | -5=n/15 | | 4/3t-(t+4/6)=1/3(3t-4) | | -3(x+8)=-56 | | 1.8+7n=9.5-7n | | -3.2d-10.61=-4.65-2.8d | | -198=18r | | 7x-2-2x=x-5 | | -2d+3.02=-3.18 | | -3.2d−10.61=-4.65−2.8d | | 104=-8(5+x) | | 3n-4n=-19.5 | | -8(3k+5)+4=-6(3k+2) | | (6)/(4+2p)=(-2 | | -1-4n=-5n-20 | | y+20.7=6.8 | | 9(3x^2-2x-2)=0 | | 110-4t=94 | | 1/2(12-2x)-4=5+2(x-7) | | 12x+4=39-2x | | 5x+80=7x-40 | | 3/4x+3/8=3 | | 440=b/26+428 | | (x-4)^2-128=0 | | -45-20x=-42 |